dr hab. Piotr Kębłowski
Consultation: Friday 9.45-11.15
Room: F-228
Tel. 42-635 51 86
Email: piotr.keblowski@uni.lodz.pl
CV
Earned Degrees
M.A., University of Lodz, Faculty of Economics and Sociology, econometrics, 2002
Ph.D., University of Lodz, Faculty of Economics and Sociology, econometrics, 2009
Habilitation, University of Lodz, 2022
Positions Held
Assistant, University of Lodz, 2003-2009
Assistant Professor (Adjunct), University of Lodz, 2009-
Professional Activities
Director of Institute of Econometrics, University of Łódź, 2022-
Academic Prizes
I prize for the best conference paper, Modelling panel data: theory and practice, Warsaw School of Economics, 2012
Rector's Prize for Scientific Achievements, UŁ, 2010
Conference grant, Foundation for Polish Science, 2006
Award of Foundation for Polish Science, START Programme, 2006
Completed Research Projects
Contract No. UMO-2012/05/D/HS4/01767, Vector error correction models of nonstationary panel data, National Science Centre, 2013-2017
Contract, Fixed or float? The panel approach to the real exchange rates of the CEEC's - implications for Poland, National Bank of Poland, 2014
Contract No. N N111 282838, The Eurosystem and the perspectives of the NMS - analysis of exchange rates misalignments, National Science Centre/Ministry of Science and Higher Education, 2009-2012
Contract No. RRC X-61, Are the New Member States on the fast track to the EMU? An analysis of exchange rates misalignments in Central European countries, GDN - CERGE-EI Foundation, 2010-2011
Contract No. N111 019 31/2139, Small sample inference on cointegration rank, Ministry of Science and Higher Education, 2006-2008
Field of Teaching
Econometrics
Advanced Econometrics
Panel Data Analysis
Forecasting
Research Interest
Exchange Rate Modelling
Nonstationary Panel Data Modelling
Small Sample Inference
Resampling Methods
Macromodelling
Refereed for
Bank i Kredyt
Central European Journal of Economic Modelling and Econometrics
Economic Modelling
International Economics
International Journal of Emerging Markets
The International Review of Economics & Finance
Operations Research and Decisions
Przegląd Statystyczny
PUBLICATIONS
Articles
2021
GVAR: A case of spurious cross-sectional cointegration
Published in: Central European Journal of Economic Modelling and Econometrics, Vol. 13 (2), 2021, 105-117
2020
with: K. LESZKIEWICZ-KĘDZIOR, A. WELFE
Real Exchange Rates, Oil Price Spillover Effects, and Tripolarity
Published in: Eastern European Economics, Vol. 58 (5), 2020, 415-435
2018
A Monte Carlo comparison of LCCA- and ML-based cointegration tests for panel VAR process with cross-sectional cointegrating vectors
Published in: Przegląd Statystyczny, Vol. 65 (2), 2018, 23-32
2017
Innowacyjność przedsiębiorstw przemysłowych państw Grupy Wyszehradzkiej a nakłady na badania i rozwój
Published in: Przegląd Statystyczny, Vol. 64 (4), 2017, 399-420
2016
Canonical Correlation Analysis in Panel Vector Error Correction Model. Performance Comparison
Published in: Central European Journal of Economic Modelling and Econometrics, Vol. 8 (4), 2016, 203-217
2015
Stały czy płynny? Model PVEC realnego kursu walutowego dla krajów Europy Środkowo-Wschodniej – implikacje dla Polski
Published in: Materiały i Studia, nr 312, 2015
2013
Wnioskowanie o rzędzie kointegracji dla modelu VEC ze składnikiem losowym z rozkładu SU Johnsona
Published in: Przegląd Statystyczny, Vol. 60 (2), 2013, 235-249
Właściwości wybranych metod małopróbkowego wnioskowania o rzędzie kointegracji
Published in: Przegląd Statystyczny, Vol. 60 (2), 2013, 163-185
with: A. WELFE
Modelowanie kursu walutowego z uwzględnieniem premii za ryzyko: model VECM i analiza wspólnych trendów stochastycznych
Published in: Analiza kointegracyjna w makromodelowaniu, 2013, A. Welfe (ed.), PWE, 107-128
2012
with: A. WELFE
A Risk-Driven Approach to Exchange-Rate Modelling
Published in: Economic Modelling, Vol. 29 (4), 2012, 1473-1482
2011
The behaviour of exchange rates in the Central European countries and credit default risk premiums
Published in: Central European Journal of Economic Modelling and Econometrics, Vol. 3 (4), 2011, 221-237
2010
with: A. WELFE
Estimation of the Equilibrium Exchange Rate: The CHEER Approach
Published in: Journal of International Money and Finance, Vol. 29 (8), 2010, 1385-1397
2009
Modelling Integrated Panel Data: An Overview
Published in: Knowledge-based Economies, 2009, W. Welfe (ed.), Peter Lang, Frankfurt am Main
2008
with: M. MAJSTEREK, A. WELFE
Price-wage System with Taxation: I(1) and I(2) Analysis
Published in: Proceedings of the thirtieth fourth international conference Macromodels, 2008, W. Welfe, A. Welfe (eds), WUŁ, Łódź
2007
Modelowanie zintegrowanych szeregów przekrojowo-czasowych
Published in: Gospodarka oparta na wiedzy, 2007, W. Welfe (ed.), PWE, Warszawa
2006
Small Sample Power of Bartlett Corrected Likelihood Ratio Test of Cointegration Rank
Published in: Proceedings of the thirtieth second international conference Macromodels, 2006, W. Welfe, A. Welfe (eds), WUŁ, Łódź
Moc testu śladu z poprawką Bartletta w krótkiej próbie
Published in: Metody ilościowe w naukach ekonomicznych, 2006, A. Welfe (ed.), Oficyna Wydawnicza SGH, Warszawa
2005
with: A. WELFE
Long-run Relationships in the Polish Economy. An Application of VEqCM
Published in: Acta Universitatis Lodzensis. Folia Oeconomica, 2005, 95-107
with: P. KARP, A. WELFE
Zastosowanie wielowymiarowej analizy kointegracyjnej do modelowania gospodarki polskiej
Published in: Ekonomista, Vol. 5, 2005, 645-658
2004
with: P. KARP, A. WELFE
Modelling Polish Economy: An Application of SVEqCM
Published in: New Directions in Macromodelling, 2004, A.Welfe (ed.), Elsevier, Amsterdam
with: A. WELFE
The ADF-KPSS Test of the Joint Confirmation Hypothesis of Unit Autoregressive Root
Published in: Economics Letters, Vol. 85 (2), 2004, 257-263
2003
Test hipotezy wspólnego potwierdzenia stopnia integracji ADF-KPSS
Published in: Przegląd Statystyczny, Vol. 50 (3), 2003, 87-104
ANALIZA DANYCH PRZESTRZENNYCH I PRZESTRZENNO-CZASOWYCH
(UŁ, Ekonometria i Analityka Danych: II stopień)
dr Maciej Jewczak, dr hab. Piotr Kębłowski, dr hab. prof. UŁ Agnieszka Rossa
2024/2025
Wymagania wstępne:
Wiedza z zakresu statystyki opisowej, wnioskowania statystycznego i ekonometrii.
Literatura obowiązkowa
1. Dańska-Borsiak B. (2011), Dynamiczne modele panelowe w badaniach ekonomicznych, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
2. Kębłowski P. (2007), Modelowanie zintegrowanych szeregów przekrojowo-czasowych, w: W. Welfe (red.) Gospodarka oparta na wiedzy, PWE, Warszawa.
3. Malczewski J., Jaroszewicz J. (2018), Podstawy analiz wielokryterialnych w systemach informacji geograficznej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
4. Suchecka J. (red.) (2014), Statystyka przestrzenna. Metody analiz struktur przestrzennych. Wydawnictwo C.H. Beck, Warszawa.
5. Suchecki B. (red.) (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, Wydawnictwo C.H. Beck, Warszawa.
6. Żądło T. (2008), Elementy statystyki małych obszarów z programem R, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach.
Literatura uzupełniająca
1. Baltagi B.H. (2016), Econometric analysis of panel data, John Wiley & Sons, Chichester.
2. Haining R.P. (2003), Spatial data analysis: theory and practice, Cambridge university press.
3. Heffner K., Gibas P. (2007), Analiza ekonomiczno-przestrzenna, Akad. Ekonomiczna im. Karola Adamieckiego.
4. Kopczewska K. (2006), Ekonometria i statystyka przestrzenna z wykorzystaniem programu R CRAN, CeDeWu, Warszawa.
5. Longford N. (2005), Missing Data and Small Area Estimation, Springer, New York.
6. Majdzińska A. (2016), Regionalizacja demograficzna. Wybrane metody i próby ich aplikacji. Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
7. Panek T. (2009), Statystyczne metody wielowymiarowej analizy porównawczej, SGH, Warszawa.
8. Piechota A.M., Szypuła B. (2014), Podstawy pracy z oprogramowaniem GIS, Katowice.
9. Rao J.N.K, Molina I. (2015), Small Area Estimation, Wiley&Sons, New Jersey.
10. Sojka E., Przybylska-Mazur A., Sączewska-Piotrowska A., Wolny-Dominiak A. (2020), Elementy statystyki i ekonometrii w analizach szeregów przestrzennych, Wyd. UE w Katowicach, Katowice.
Program
1. Ekonomiczne dane przestrzenne i przestrzenno-czasowe.
2. Przestrzenna koncentracja i specjalizacja zjawisk.
3. Autokorelacja przestrzenna i przestrzenno-czasowa.
4. Przestrzenna analiza dynamiki zjawisk.
5. Systemy Informacji Geograficznej (GIS) i ich zastosowanie w analizach przestrzennych
- GIS jako środowisko podejmowania decyzji
- Metody wielokryterialne wspomagania decyzji w zagadnieniach przestrzennych oraz optymalizacja w GIS.
6. Ekonometryczne modelowanie struktur procesów przestrzennych i przestrzenno-czasowych (w tym modele regresji przestrzennej SAR, SEM).
7. Dane panelowe, efekty indywidualne jedno- i dwukierunkowe, efekty ustalone i losowe.
8. Modele: pooled, FE, RE. Testowanie istotności efektów indywidualnych. Test Hausmana.
9. Słaba i silna zależność przekrojowa. Test CD Pesarana.
10. Panelowe testy integracji.
11. Analiza kointegracyjna danych panelowych.
12. Zastosowanie wybranych metod wielowymiarowej analizy porównawczej w badaniach obiektów przestrzennych.
Sposoby i kryteria oceniania:
Wykład: egzamin (test wiedzy na platformie Moodle) odbędzie się ... czerwca 2025 roku w godzinach ... , w sali ... .
Egzamin poprawkowy odbędzie się ... września 2025 roku w godzinach ... , w sali ... .
Laboratorium: aktywność na zajęciach, praca projektowa na zaliczenie obejmują modele ekonometryczne/projekt optymalizacyjny/analizę baz danych.
PANEL DATA ANALYSIS
(UŁ, Ekonometria i Analityka Danych: I stopień)
dr hab. Piotr Kębłowski
2024/2025
Prerequisits:
Introductory-level knowledge and skills in statistics and linear algebra. Basic knowledge in modelling stationary and nonstationary time-series data is recommended.
Readings
1. B. H. Baltagi, Econometric Analysis of Panel Data, Wiley, 2016.
2. C. Hsiao, Analysis of Panel Data, Cambridge University Press, Cambridge, 2014.
3. P. Kębłowski, Modelling Integrated Panel Data: An Overview, in: Knowledge-based Economies, W. Welfe (ed.), Peter Lang, Frankfurt am Main, 2009.
Suplementary readings
1. B. H. Baltagi, Nonstationary Panels, Cointegration in Panels and Dynamic Panels: a Survey, Advances In Econometrics, 2000, vol. 15, pp. 7 – 51.
2. P. C. B. Phillips, H. R. Moon, Linear Regression Limit Theory for Nonstationary Panel Data, Econometrica, 1999, vol. 67, pp. 1057 – 1111.
Programme
1. Double-indexed processes – basic concepts.
2. One-way error component regression model – fixed effects, random effects, Hausman test, maximum likelihood method, prediction.
3. Two-way error component model.
4. Dynamic panels.
5. Unit root tests.
6. Stationarity tests.
7. Empirical applications of unit root/stationarity tests – purchasing power parity.
8. Univariate models.
9. Multivariate models.
10. Empirical application of the panel vector error correction models to economic modeling.
Lecture notes will be made available to students. The course will utilize user-friendly econometric softwares – Eviews and Gretl.
The final exam will take place during the last class. To pass, a student needs to obtain at least 50% of the best student’s score.
ZAAWANSOWANA EKONOMETRIA PANELOWA
(UŁ, Ekonomia: II stopień)
dr hab. Piotr Kębłowski
2024/2025
Literatura obowiązkowa
1. Dańska-Borsiak B., Dynamiczne modele panelowe w badaniach ekonomicznych, Wydawnictwo Uniwersytetu Łódzkiego, Łódź, 2011
2. P. Kębłowski, Modelowanie zintegrowanych szeregów przekrojowo-czasowych, w: Gospodarka oparta na wiedzy, W. Welfe (red.), PWE, Warszawa, 2007
Literatura uzupełniająca
1. B. H. Baltagi, Econometric Analysis of Panel Data, Wiley, 2021
2. C. Hsiao, Analysis of Panel Data, Cambridge University Press, Cambridge, 2014
Program
1. Procesy indeksowane podwójnie – podstawowe pojęcia
2. Źródła danych panelowych, budowa panelowych baz danych, oprogramowanie
3. Model jednokierunkowych efektów indywidualnych – efekty ustalone i losowe (estymacja i wnioskowanie), test Hausmana
4. Model dwukierunkowych efektów indywidualnych
5. Panele dynamiczne
6. Testy stopnia integracji szeregów przekrojowo-czasowych
7. Testy stacjonarności szeregów przekrojowo-czasowych
8. Zastosowanie testów stopnia integracji i stacjonarności w weryfikacji wybranych teorii ekonomicznych
9. Testy kointegracji dla szeregów przekrojowo-czasowych
10. Jednorównaniowe modele niestacjonarnych danych panelowych z restrykcją kointegracji
Wymagania wstępne: podstawowa wiedza z zakresu statystyki matematycznej i ekonometrii szeregów czasowych.
Forma zaliczenia laboratorium: praca projektowa - model ekonometryczny. Studenci przygotowują w zespołach dwu-, trzyosobowych pracę projektową na wybrany temat. Ocenie podlega m.in.: konstrukcja panelowej bazy danych dla danego zjawiska, wybór metod badawczych i ich zastosowanie, poprawność modelowania ekonometrycznego, zasadność wyciągniętych wniosków.
Forma zaliczenia wykładu: test wyboru.
SEMINARIUM MAGISTERSKIE
(UŁ, Różne kierunki: II stopień )
Seminaria są prowadzone przez pracowników Katedry Modeli i Prognoz Ekonometrycznych Uniwersytetu Łódzkiego. Tematyka obejmuje metody ekonometryczne i ich zastosowanie w makro-- i mikromodelowaniu. W ramach przygotowywanych prac magisterskich słuchacze wykorzystują nowoczesne metody ekonometryczne, np.:
- kointegrację szeregów czasowych i danych panelowych,
- modele klasy ARCH/GARCH,
- modele zmian strukturalnych,
- modele nieliniowe
- metody symulacyjne.
Badania mogą koncentrować się zarówno na kwestiach estymacji i weryfikacji hipotez, jak i modelowania, prognozowania i oceny alternatywnych polityk gospodarczych.
Przykładowe tematy badań:
- Procesy inflacyjne w Polsce i gospodarkach europejskich. Krzywa Phillipsa.
- Kurs walutowy a procesy inflacyjne: analiza efektu ‘pass-through’.
- Kursy walutowe równowagi. Ryzyko kryzysu walutowego w ramach mechanizmu ERM2
- Polityka monetarna i fiskalna w okresie poprzedzającym przystąpienie do ERM2.
- Reguły decyzyjne w bankach centralnych.
- Determinanty stóp procentowych. Stopy procentowe równowagi.
- Determinanty podaży – funkcja produkcji i produktywność czynników produkcji.
- Modelowanie i prognozowanie popytu. Kompletne modele popytu.
- Handel zagraniczny. Bilans płatniczy. Przepływy kapitałów długo- i krótkoterminowych.
- Procesy finansowe i ich modelowanie na podstawie danych wysokiej częstotliwości.
- Badanie efektywności rynków.
- Analiza oczekiwań (racjonalne, adaptacyjne).
- Innowacyjność gospodarek a ich rozwój.
- Modelowanie rynku pracy.
- Heurystyczne metody optymalizacji w ekonometrii.
- Ekonometryczna analiza wyników sportowych.
- Prognozowanie procesów gospodarczych i finansowych – metody i aplikacje.
- Modelowanie rynku usług medycznych.
- Rynek usług wspólnych – determinanty rozwoju.
- Prognozowanie zachowania podmiotów ekonomicznych (przedsiębiorstw).
W ostatnich latach obronione zostały następujące prace magisterskie:
- Przenoszenie zmian kursu walutowego na inflację cen krajowych (*)
- Zastosowanie metody kointegracji do modelu P-Star.
- Analiza kointegracyjna modeli z zaburzeniami struktury na przykładzie modelu handlu zagranicznego Polski.
- Szacowanie stopy NAIRU/NAWRU dla gospodarki polskiej przy wykorzystaniu wielowymiarowej analizy kointegracyjnej.
- Nowoczesne modele kwantyfikacji ryzyka portfela kredytowego.
- Analiza transmisji polityki monetarnej w Polsce.
- Modelowanie inflacji w Polsce za pomocą modeli klasy ARCH.
- Inflacja – ujęcie monetarystyczne i kosztowe.
- Analiza kursu walutowego euro – dolar amerykański z uwzględnieniem przepływów kapitałowych.
- Budżet państwa w okresie transformacji.
- Zastosowanie liniowego modelu wydatków do analizy popytu konsumpcyjnego w Polsce
- Progowy model korekty błędem.
- Test hipotezy wspólnego potwierdzenia integracji.
(*) Praca wyróżniona w VII edycji Konkursu o Nagrodę Prezesa NBP za najlepszą pracę magisterską w 2014 roku